Orientation-selective functional magnetic resonance imaging adaptation in primary visual cortex revisited.
نویسندگان
چکیده
The processing of orientations is at the core of our visual experience. Orientation selectivity in human visual cortex has been inferred from psychophysical experiments and more recently demonstrated with functional magnetic resonance imaging (fMRI). One method to identify orientation-selective responses is fMRI adaptation, in which two stimuli-either with the same or with different orientations-are presented successively. A region containing orientation-selective neurons should demonstrate an adapted response to the "same orientation" condition in contrast to the "different orientation" condition. So far, human primary visual cortex (V1) showed orientation-selective fMRI adaptation only in experimental designs using prolonged pre-adaptation periods (∼40 s) in combination with top-up stimuli that are thought to maintain the adapted level. This finding has led to the notion that orientation-selective short-term adaptation in V1 (but not V2 or V3) cannot be demonstrated using fMRI. The present study aimed at re-evaluating this question by testing three differently timed adaptation designs. With the use of a more sensitive analysis technique, we show robust orientation-selective fMRI adaptation in V1 evoked by a short-term adaptation design.
منابع مشابه
Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging
Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...
متن کاملOrientation-selective adaptation to illusory contours in human visual cortex.
Humans can perceive illusory or subjective contours in the absence of any real physical boundaries. We used an adaptation protocol to look for orientation-selective neural responses to illusory contours defined by phase-shifted abutting line gratings in the human visual cortex. We measured functional magnetic resonance imaging (fMRI) responses to illusory-contour test stimuli after adapting to ...
متن کاملOrientation-specific adaptation in human visual cortex.
Nearly all methods for analyzing and interpreting functional magnetic resonance imaging (fMRI) data assume that the fMRI signal behaves in an approximately linear manner. However, it has been shown that the mean fMRI response to a pair of briefly presented visual stimuli is significantly smaller than would be expected from the response to a single stimulus. This smaller response could be the re...
متن کاملLarsson & Harrison: Inheritance of adaptation in human visual cortex Spatial specificity and inheritance of adaptation in human visual cortex
Adaptation at early stages of sensory processing can be propagated to downstream areas. Such inherited adaptation is a potential confound for functional magnetic resonance imaging (fMRI) techniques that use selectivity of adaptation to infer neuronal selectivity. However, the relative contributions of inherited and intrinsic adaptation at higher cortical stages, and the impact of inherited adap...
متن کاملSpatial specificity and inheritance of adaptation in human visual cortex
Adaptation at early stages of sensory processing can be propagated to downstream areas. Such inherited adaptation is a potential confound for functional magnetic resonance imaging (fMRI) techniques that use selectivity of adaptation to infer neuronal selectivity. However, the relative contributions of inherited and intrinsic adaptation at higher cortical stages, and the impact of inherited adap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2012